|
|
 |
Hódító / Queosia forum
http://queosia.com
http://hodito.hu
|
|
Egyéb Minden, ami máshova nem fér |

06-14-2008, 15:06
|
Member
|
|
Join Date: Jan 2006
Location: Pécs/Bp
Posts: 2,240
Activity: 0%
Longevity: 99%
|
|
Quote:
Originally Posted by Valezius
Én az alapformulát használtam e^x=(1+x/n)^n, ahol "n" tart a végtelenbe.
x helyett most i*x szerepel, felbontottam a jobb oldalt, és kijött 
|
ööö.... tekintve, hogy az e^i egy jelölési forma, ami az egységkör kerülete mentén való haladást mutatja i együtthatója szerinti 2*Pi periódussal, szerintem nem bizonyítandó, hanem definícióból kijön, hogy e^(i*Pi)=-1
Ez kb olyan, mint hogy bizonyítsd be: 2^2=4 -->2*2=4 tadadadá 
__________________
"A tanult szerencsét hívják tudásnak"
Eben a mondatba három hiba van.
|

06-14-2008, 15:10
|
Senior Member
|
|
Join Date: Oct 2006
Location: Veresegyház
Posts: 3,662
Activity: 0%
Longevity: 96%
|
|
Quote:
Originally Posted by Xeper
ööö.... tekintve, hogy az e^i egy jelölési forma, ami az egységkör kerülete mentén való haladást mutatja i együtthatója szerinti 2*Pi periódussal, szerintem nem bizonyítandó, hanem definícióból kijön, hogy e^(i*Pi)=-1
Ez kb olyan, mint hogy bizonyítsd be: 2^2=4 -->2*2=4 tadadadá 
|
Hát erre nehezen tudok bármit mondani, mivel ilyenről nem tanultam, hallottam.
Viszont elhiszem, hogy ez definíció, de az is definíció, hogy (1+x/n)^n=e^x
Tehát a két definíció ekvivalenciája bizonyításra szorul.
akkor csináljunk így mintha ezt bizonyítottam volna 
|

06-14-2008, 15:51
|
Member
|
|
Join Date: Mar 2006
Location: Csíkszereda
Posts: 1,312
Activity: 0%
Longevity: 99%
|
|
Quote:
Originally Posted by Valezius
Hát erre nehezen tudok bármit mondani, mivel ilyenről nem tanultam, hallottam.
Viszont elhiszem, hogy ez definíció, de az is definíció, hogy (1+x/n)^n=e^x
Tehát a két definíció ekvivalenciája bizonyításra szorul.
akkor csináljunk így mintha ezt bizonyítottam volna 
|
hogy értitek azt, hogy definíció? 
értelmezés vagy tétel? nálunk nem nagyon használják ilyenekre, hogy (1+x/n)^n=e^x... ez nálunk tétel (vagy egyenlőség)...
amúgy meg:
http://www.math.toronto.edu/mathnet/...rner/epii.html
google, második találat. 
__________________
"To be
the eyes
and ears
and conscience
of the Creator of the Universe,
you fool."
|

06-14-2008, 16:34
|
Senior Member
|
|
Join Date: Oct 2006
Location: Veresegyház
Posts: 3,662
Activity: 0%
Longevity: 96%
|
|
Quote:
Originally Posted by csunyabogar
értelmezés vagy tétel? nálunk nem nagyon használják ilyenekre, hogy (1+x/n)^n=e^x... ez nálunk tétel (vagy egyenlőség)...
|
Azért ezt én nagy vonalakban definíciónak nevezem 
De lehet, hogy szerencsésebb a jelölés, miután bizonyítottuk, hogy (1+1/n)^n konvergens.
|

06-14-2008, 20:35
|
Member
|
|
Join Date: Mar 2006
Posts: 142
Activity: 0%
Longevity: 99%
|
|
Quote:
Originally Posted by Valezius
Azért ezt én nagy vonalakban definíciónak nevezem 
De lehet, hogy szerencsésebb a jelölés, miután bizonyítottuk, hogy (1+1/n)^n konvergens.
|
Mi így tanultuk:
Tétel: Legyenek e_n=(1+1/n)^n és f_n=(1+1/n)^(n+1).
Ekkor (e_n), illetve (f_m) sorozat szigorúan monoton növekvő, illetve csökkenő.
Továbbá bármely n,m eleme N-re e_n < f_m és
lim_(n->inf) e_n = lim_(n->inf) f_n
Definíció: Az iménti tételben szereplő (e_n) és (f_n) sorozatok közös határértékét Euler-féle e számnak nevezzük.
|

06-26-2008, 07:28
|
Senior Member
|
|
Join Date: Oct 2006
Location: Veresegyház
Posts: 3,662
Activity: 0%
Longevity: 96%
|
|
Logikai feladat:
Minden nap 8:24-kor kelek, miért?
|

06-26-2008, 09:35
|
 |
Member
|
|
Join Date: Dec 2006
Location: Tatabánya/Szeged
Posts: 2,796
Activity: 0%
Longevity: 95%
|
|
Quote:
Originally Posted by Valezius
Logikai feladat:
Minden nap 8:24-kor kelek, miért?
|
Mert nem tudod átállítani az ébresztőórát? 
|

06-26-2008, 10:03
|
Senior Member
|
|
Join Date: Jan 2006
Posts: 5,907
Activity: 0%
Longevity: 99%
|
|
Quote:
Originally Posted by Valezius
Logikai feladat:
Minden nap 8:24-kor kelek, miért?
|
Mert hulye vagy.
(Bocs  )
__________________
Remedy
|

06-26-2008, 12:16
|
Member
|
|
Join Date: Mar 2006
Posts: 142
Activity: 0%
Longevity: 99%
|
|
Quote:
Originally Posted by Valezius
Logikai feladat:
Minden nap 8:24-kor kelek, miért?
|
Az állítás első fele hamis, így a "miért"-re adott tetszőleges válasz logikailag igaz értéket ad. 
|

06-26-2008, 15:12
|
Senior Member
|
|
Join Date: Oct 2006
Location: Veresegyház
Posts: 3,662
Activity: 0%
Longevity: 96%
|
|
Na jó átfogalmazom a feladatot.
XY-nak legkésőbb 7.30-kor fel kell kelnie, hogy beérjen a munkahelyére, ha 1perccel is később kel, akkor elkésik. Emellett szeretne minél tovább is aludni, mégis 7:24-re húzza fel az óráját, miért?
|
Currently Active Users Viewing This Thread: 1 (0 members and 1 guests)
|
|
Posting Rules
|
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts
HTML code is Off
|
|
|
All times are GMT +1. The time now is 05:08.
 |
|
|
|
|
|
|