Quote:
Originally Posted by Redback
OKTV-re készülés közben, akadt egy feladat, amit nem tudok megcsinálni:
Az ABC hegyesszögű háromszög C-ből induló magasságának talppontja D. Szerkesszük meg azt az AB-vel párhuzamos egyenest, aminek a háromszögbe eső szakasza D-ből derékszög alatt látszik.
Ez a szakasz legyen EF szakasz, E pont az AC, míg F az a BC oldal egy pontja. Én úgy indultam ki, hogy az DFE derékszögű háromszög köré írható körének a középpontját keresem meg, ez legyen O. így OD=r, megvan a kör, és így megvannak EF pontok is. Azonban csak addig jutottam, hogy az O pont valahol az C-nél lévő szög szögfelezőjén van.
Nem szeretném, ha megmondanátok a megoldást, csak rávezetnétek. Esetleg ha rossz úton indultam, akkor a helyes út első lépéseit, vagy a használt tételeket,összefüggéseket elmondhatnátok. Köszönöm!
|
Én nem hiszem, hogy a szögfelezőn lenne az a pont.
Ha nincs semmi ötletem, akkor még mindig ott a koordinátageometria.
Az általános szabály az, hogy amit ki lehet számolni azt meg is lehet szerkeszteni. És fordítva.
Viszonylag egyszerűen ki lehet számolni az E pont koordinátáját.
Én 0,0-ba tenném a D pontot, aztán (-a,0), (b,0), (0,c) a három csúcs.
Mondjuk valami ilyesmi jellegű lesz:
a/b^2*gyök(c)
Szakaszokat össze lehet szorozni, el lehet osztani a párhuzamos szelők tételének okos, többszöri alkalmazásával.
Most hirtelen nem tudom, hogy azzal lehet-e gyököt vonni, de az is kijön valahogy.
Aztán ha legalább valami már van a papíron, utána még lehet egy normális megoldást keresni.